Problem 3 §
From U1,U2 to R,Θ §
Consider that
- U1=2πΘ, dΘdU1=2π1
- U2=exp(−2R2), dRdU2=Rexp(−2R2)
Using change of variables we have:
- fΘ(θ)=2π1
- fR(r)=rexp(−2r2)
From R,Θ to Z1,Z2 §
Note that:
- Z12+Z22=R2(cos2Θ+sin2Θ)=R2 thus R=Z12+Z22
- dZ1dR=Z1(Z12+Z22)−1/2=RZ1
- Symmetrically dZ2dR=RZ2
- Z1Z2=RcosΘRsinΘ=tanΘ thus Θ=arctan(Z1Z2)
- dZ1dΘ=1+Z12Z221⋅Z2(−1)Z1−2=−Z12+Z22Z2=−R2Z2
- Symmetrically dZ2dΘ=Z12+Z22Z1=R2Z1
Now, calculate the jacobian for a multivariate change of variables:
∣J∣=∂z1∂r∂z1∂θ∂z2∂r∂z2∂θ=RZ1−R2Z2RZ2R2Z1=R3Z12+R3Z22=R1
And thus the join probability being:
fΘ,R(θ,r)=fΘ(θ)⋅fR(r)⋅∣J∣=2π1rexp(−2r2)⋅r1=2π1exp(−2z12+z22)=2π1exp(−2z12)⋅2π1exp(−2z22)=fZ1(z1)⋅fZ2(z2)
This show both that:
- fZ1,fZ2 is the standard normal pdf
- Z1,Z2 are independent because the joint pdf is a simple product of each pdf. ∎