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I. Expectations 

 In this experiment, we will measure the spring constant in two separate methods, and judge whether 
the two values agree. The first method will reference Hooke’s Law to measure the extension of the spring 
depending on the acting force, according to the following relationship: 

!  

 Where F is the force acting on the spring, x is the extension of the spring, and k is the spring 
constant. The graph will be plotted as the weight (force) on the spring, against the extension of the spring. 

 The second method will use measure period of oscillation of an attached mass (as Hooke’s law will 
guarantee that the force—thus the acceleration—acting on the mass is proportional and opposite to the 
displacement from equilibrium) as the motion of the mass is a simple harmonic motion. The following 
relationship will be used: 

!  

 Where ⍵ is the angular frequency of oscillation, m is the mass of the weight, and k is the spring 

constant. ⍵ is obtained indirectly by using the relationship ! , where T is the period of oscillation. The 

relationship then is substituted and rearranged to: 

!  

 We will, therefore, plot the graph of the square of angular frequency, against the reciprocal of the 
mass of weights, to surface a linear relationship and obtain the spring constant. 

II. Methodology 

Method 1: Hooke’s Law 

Procedure: 
1. Measure the mass of the weights and determine their uncertainties. 
2. Set up apparatus according to Diagram 1 in Section III. 
3. Note spring length without any attached mass 
4. Attach mass of spring, and measure the extension of the spring. 
5. Repeat step 4, varying the total mass of the weights. 

Method 2: Simple Harmonic Motion 

Procedure: 
1. Measure the mass of the weights and determine their uncertainties. 
2. Set up apparatus according to Diagram 2 in Section III. 
3. Attach mass of spring, and extend and release adequately to ensure minimal unintended deviation 

from desired motion 
4. Measure the period of oscillation of weight, by analyzing a slow-motion recording of the simple 

harmonic motion 
5. Repeat step 5, varying the total mass of the weights. 

Notable Apparatus: 
- Digital Balance 
- Hooked Weight Holder 
- Slotted Weights* 
- Spring 
- Ruler 
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* It is crucial to distinguish between the apparatus, the metal weights, and the physical value, weight, 
measured in Newtons. 

III. Diagrams 

[Continued on Following Page]  

[Diagram 1] Smartphone (slow motion 
camera) attached to Stand and Clamp 
(Side View)

[Diagram 2] Spring and Ruler 
attached to Stand and Clamp 
(Front View)

[Drawing 3] Complete Apparatus 
(Diagonal View)
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IV. Table and Data Processing 

 The mass of the weights were increased in 50g intervals. All weights were chosen to have ±1% 
uncertainty or less each, and therefore will have less than ±1% uncertainty combined as well. These 
measurements, as well as the value of physical constants, are listed in Table 3. 

 For the first method, the weight (force) on the spring is calculated using ! , where g is the 
gravitational field strength, taken as ! . For example, the force that a 150g metal weight imposes 
on the spring is calculated as: ! . 

 The extension of the spring is measured with a ruler with graticules of 1mm, and taken down by 
using a straight stick to identify the spring’s accurate extended length. Due to the minor inaccuracies and 
slight rocking of the spring, the uncertainty is taken to be ±1mm or 0.001m 

 For the second method, the period measurement is taken among five oscillations, the length of 
which is calculated by counting the frames between the start and end of the five oscillation of the slow-
motion recording, taken at 240 frames per second. Therefore, the period of one oscillation, given a certain 
mass on the spring is: 

!  

 The uncertainty is taken as ! , taking into account the shutter lag of the 

digital camera sensor and minor inaccuracies in frame counting. This uncertainty is propagated as the square 

of the angular frequency is calculated using the above mentioned relationship ! : 

!  

 For example, the square of the angular frequency of the oscillation when the attached mass is 150g, 
is calculated as: 

!  

!  

 The reciprocal of mass of weights are simply calculated as ! , with its relative uncertainty 

unchanged. For example, for a weight of mass 150g, ! .  

The significant figures are chosen according to the absolute uncertainty of each value,  
e.g. ! , ! . or 6.67 ±1%  

w = mg
9.81m ⋅ s−2

(150g ± 1%) ⋅ 10−3 ⋅ 9.81 = (1.472 ± 1%) = 1.472 ± 0.015 N

T =
(end frame number − start frame number)

240 ⋅ 5

± 1
120 ⋅ 5

 s ≈ ± 0.002 s

ω =
2π
T

ω2 =
4π2

T 2

T150g =
5248 − 4608

240 ⋅ 5
= 0.533 ± 0.002 s

ω2
150g =

4π2

(0.533 ± 0.002)2
=

4π2

0.284089
± 0.7 % = 139 ± 0.7 % = 139 ± 1 Hz2

1
m

1
m

=
1

150 ⋅ 10−3 ± 1 %
= 6.67 ± 1 %

6.67 ⋅ 1 % = 0.0667  ∴ 6.67 ± 0.07

[Table 3] Measured Constants

Mass of weights  
/ g

Mass of weight holder  
/ g

Pi (π)

50 ± 0.5 (1%) 100 ± 1 (1%) 9.81 3.1416

Gravitational Field 
Strength / "m ⋅ s−2
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[Method 1: Table 1] Extension of Spring due to force by weights of different masses

Total mass of weights on spring 
(m) / g

Weight (Force) on spring  
 (F) / N

Extension of spring 
(x) / m

± 1% ± 1% ± 0.001

100 0.98 0.044

150 1.47 0.067

200 1.96 0.091

250 2.45 0.112

300 2.94 0.136

350 3.43 0.159

400 3.92 0.181

450 4.41 0.203

500 4.91 0.225

550 5.40 0.248

600 5.89 0.270

[Method 2: Table 2] Period of oscillation and Squared Angular Frequency by weights of different masses

Raw Data Processed Data Raw Data Processed Data

Mass of weights 
attached to spring  

(m) / g

start 
frame

end 
frame

Period  
(T) / s

Square of Angular 
Frequency 
(⍵) / Hz2

± 1% ± 1% - - ± 0.002 -

100 10.00 3771 4294 0.436     208   ± 2

150 6.67 4608 5248 0.533     139   ± 1

200 5.00 1279 2013 0.612 105.5 ± 0.7

250 4.00 751 1568 0.681 85.1 ± 0.5

300 3.33 697 1589 0.743 71.4 ± 0.4

350 2.86 661 1619 0.798 61.9 ± 0.3

400 2.50 839 1862 0.853 54.3 ± 0.3

450 2.22 909 1990 0.901 48.6 ± 0.2

500 2.00 1285 2420 0.946 44.1 ± 0.2

Reciprocal of mass of 
weights  
( ) / kg-11

m



W
ei

gh
t (

Fo
rc

e)
 o

n 
sp

rin
g 

/ N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

Extension of spring / m
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

[Method 1: Graph 1] Weight (Force) on Spring Against Extension of Spring
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V. Graph Processing 

Attached: [Method 1: Graph 1] Weight (Force) on Spring Against Extension of Spring 

 As the graph is plotted as the weight (force) on the spring, against the extension, using Hook’s law 
we can see that the gradient of the graph indicates the spring constant. 

!  

 The spring constant ! and its uncertainty, obtained from this first method, is calculated from the 
graph to be the following: 

!  

!  

!  

Attached: [Method 2: Graph 2] Angular Frequency of Oscillation against Reciprocal of Attached Mass 

 The gradient of the graph, also in this case, is equal to the spring constant, as the graph was plotted 
with the squared of angular frequency against the reciprocal of mass. 

!  

!  

 The spring constant !  and its uncertainty, obtained from this second method, is calculated from the 
graph to be the following: 

!  

!  

!  

VI. Conclusion 

 The range of the two resultant spring constants, which is predicted to agree, !  and ! , does not 
overlap, despite being very close to each other.  

!  
!  

 This does not meet our theoretical expectations that the two values will overlap. The likely 
explanation is that there were systematical errors in Method 1, Method 2, or both, which caused an overall 
deviation between the two values. These errors will be noted in the following section. 

F
x

= k1

k1

4.48
0.212

≤ k1 ≤
4.85

0.226

21.13 ≤ k1 ≤ 22.46

k1 = 21.8 ± 0.7N ⋅ m−1

4π2

T 2
= k2 ⋅

1
m

ω2 = k2 ⋅
1
m

k2

162.5
8.15

≤ k2 ≤
96
4.6

19.94 ≤ k2 ≤ 20.87

k2 = 20.4 ± 0.5N ⋅ m−1

k1 k2

k1 = 21.8 ± 0.7N ⋅ m−1

k2 = 20.4 ± 0.5N ⋅ m−1
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VII. Evaluation 

 The most significant error is the disagreement between the values of the spring constant obtained 
from Method 1 and Method 2. We can suspect that the error is systematic, as in Graph 2, the vertical 

intercept of the worst-fit lines do not enclose the origin (which it should, as !  and !   has a directly 

proportional relationship without other terms to shift the vertical intercept). As the meaning of the axis in 
Graph 2 are difficult to evaluate, though, the cause of the problem is difficult to identify. We can think of 
some systematic errors that may have caused this problem, as well as their respective solutions: 

(i) A slight change in the location of the ruler / height of clamp holding the spring / bending of hood 

 The most likely explanation is that during the experiment there was a slight movement in the 
location of the ruler relative to the spring, by a slight bump or an unstable table, or a change in the bend of 
the hook holding the spring. This can be resolved by being more careful to keeping the equipment consistent, 
and re-measuring default values at regular intervals. 
 Note, however, that in Method 2, dampening (decrease in amplitude due to energy loss from system) 
would not have significantly altered the measurements, as the frequency is not correlated with amplitude. 

(ii) Change in spring constant due to repetitive, excessive strain 

 It is possible, although unlikely, that the spring was inconsistent in its behavior, due to the large 
amount of load imposed on it throughout the experiment. This can be resolved by using a spring capable of 
higher loads, or by reducing the force imposed on the spring (though at a cost of reduced data reliability). 

(iii) Shutter lag in recording of oscillations, misidentification of start and end frames 

 Every digital video camera requires processing each frame and saving it to a storage device. In some 
cases, especially in slow motion videos, there may be problems with saving the exact frame at the exact 
moment in time; delays in processing and storing the data may result in slight deviations in what is shown in 
the frame, and what actually happened at that moment. Alternatively, digital video compression can result in 
frames that are indistinguishable from neighboring frames, or a slight misrepresentation of the real location 
of each object. 
 This can be resolved simply by using photogates (which the teacher recommended, but which I 
declined due to the inconvenient setup), which have a much simpler mechanism, is designed for 
experimental use, and is free from the problems mentioned above. A lesson to be learnt is to follow the 
recommendations of one’s teacher when choosing equipment. 

 Regarding the uncertainty of the measured values (ignoring possible systematic errors) the 
uncertainty of the period was the smallest, ranging from ±0.46% to ±0.21%. Other values, such as mass of 
weights (±1%), and the extension of the spring (± 0.37% to ± 2.3%) also had fairly small uncertainties. 
 The biggest cause of uncertainty, the measurement of the extension of the spring, can be reduced by 
using infra-red distance sensors facing upwards from the floor, to the spring, that would measure the distance 
from it to the weight. Reasonably priced infra-red distance sensors can be accurate up to ±0.01mm, which 
would reduce the uncertainties to under 0.1%. However, in this case, other factors, such as surface 
inconsistencies of weights, or the slight rocking of hanging weights, and may limit such small uncertainty 
values. 
 Undeniably, however, systematic errors must be identified and resolved before other measures to 
reduce uncertainties would be meaningful.

4π2

T 2

1
m


